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On the Riemannian Positive Mass Theorem

Abstract

In this article, we discuss the Riemannian positive mass theorem (without initial data sets or spin
assumptions) while providing a physical intuition to the mathematical formulation of this theorem. Lastly,
we present three special cases of this theorem: the spherically symmetric case, the conformally flat case,
and the 2-dimensional “toy model.”

1 Introduction

Physically and intuitively, we know that the mass density function that describes the distribution of matter
in the universe should be a nonnegative function. In Newton’s theory of gravity, the divergence theorem
tells us that if the mass density function is nonnegative everywhere and positive somewhere, then the total
mass of the system is positive. That is, the gravitational potential asymptotically looks like a potential
created by positive point masses. Physically, this means that test particles far away from the points where
the mass density is positive are “attracted” to the source masses. In this sense, the positive mass theorem
is concerned with the question: why is mass always attractive? In more precise terms, does nonnegative
scalar curvature (i.e., nonnegative mass density) always imply nonnegative mass? A counterexample to
this would indicate that matter could somehow “gravitationally repel” other matter.

While the positive mass theorem seems somewhat intuitive, it is not obvious at all why it should be
true mathematically. Even to state the theorem, we must take great care and ask ourselves: what actually
is mass? Thus, the goal of this article is to investigate the simplest setting of the positive mass theorem
(as studied by Schoen and Yau in 1979 in [3]), and to verify its validity in some special configurations.

2 Preliminary definitions

In this section, we define a few objects that will be used throughout this article (a broader discussion
related to these concepts can be found in do Carmo [1]). A Riemannian manifold (Mn, g) is a smooth
manifold Mn equipped with a Riemannian metric g ∈ C∞(T ∗M ⊙ T ∗M); i.e., g is a positive-definite
symmetric (0, 2)-tensor. Since this metric defines an inner product on each tangent space TpM , we
oftentimes write g(v, w) = ⟨v, w⟩, for v, w ∈ TpM . If (e1, . . . , en) is an orthonormal basis of TpM and
(e1, . . . , en) is its corresponding dual basis (i.e., a basis of T ∗

pM), we can write

g = gije
i ⊗ ej ,

where gij := ⟨ei, ej⟩ is a symmetric matrix of functions. It is worth noting that, from a Riemannian metric
g, we can naturally define a volume form

vol :=
√
det(gij) e

1 ∧ · · · ∧ en. (1)

As described in the first section of [2], we can use this volume form to construct a volume measure on M
(sometimes called Riemannian measure). More precisely, in each coordinate patch, the measurable sets
are those that correspond to Lebesgue measurable sets in Rn via the coordinate chart. Then, we take
measurable sets in M to be countable union of those sets. Finally, the volume of a measurable set U in
M is defined to be

µ(U) :=

∫
U

vol . (2)

If M is non-orientable, we need to be a bit more careful when defining a volume measure since there
are no globally defined volume forms. In this case, we simply push forward the volume measure on the
(orientable) double cover of M and divide by 2. When integrating over a manifold M , we denote the
volume measure by dµ or dµM or dµg if specificity is needed.

1



Now, given the Levi-Civita connection ∇ on a Riemannian manifold (M, g), we define the divergence
divX : M → R of X ∈ X(M) as

divX(p) := tr (Y (p) 7→ ∇Y X(p)) , p ∈ M.

Moreover, we define the gradient of a smooth function f as the vector field grad f given by

⟨grad f(p), v⟩ = dfp(v), p ∈ M, v ∈ TpM.

Using these notions, we define the Laplacian ∆: C∞(M) → C∞(M) as

∆f := div grad f.

Finally, a crucial notion from Riemannian geometry used to study general relativity is curvature. The
Riemann curvature tensor on (M, g) is defined here1 as the (1, 3)-tensor given by

R(X,Y )Z := −∇X∇Y Z +∇Y ∇XZ +∇[X,Y ]Z,

for all X,Y, Z ∈ X(M). We can use the metric g to view this curvature tensor as a (0, 4)-tensor given by

R(X,Y, Z,W ) := g(R(X,Y )Z,W ),

for all X,Y, Z,W ∈ X(M). It is important to note that, for each X,Y, Z,W ∈ X(M), R is symmetric in
the first and last pairs of entries, skew-symmetric in the first two and last two entries, and R satisfies the
First Bianchi Identity

R(X,Y )Z +R(Z,X)Y +R(Y,Z)X = 0.

The Ricci tensor is a (0, 2)-tensor defined as the trace of the Riemann curvature tensor over the second
and fourth components. More precisely, if (e1, . . . , en) is an orthonormal basis for TpM , then

Ric(X,Y ) := tr(R(X, ·)Y ) =

n∑
i=1

R(X, ei, Y, ei).

The scalar curvature is defined as the function scal : M → R given by the trace of Ric; namely,

scal := tr(Ric) =

n∑
j=1

Ric(ej , ej) = 2
∑

1≤i<j≤n

R(ei, ej , ei, ej).

These “simpler” tensors scal and Ric are very useful to study geometry since they carry information about
the volume defect and volume distortion, respectively, of small balls in (M, g) compared to a space form.
As discussed in the next sections, it turns out that scalar curvature is closely related to the mass density
in the universe. Lastly, we define the divergence-free (as shown in [2]) Einstein tensor as

G := Ric−1

2
scal g.

3 The Riemannian positive mass theorem

3.1 Schwarzschild metrics

In preparation for stating the Riemannian positive mass theorem, we first investigate spherically symmetric
metrics in search of a “fundamental metric” that describes spaces of constant scalar curvature. In this
sense, one can think of a spherically symmetric metric g as the warped product of a line with the (n− 1)-
sphere Sn−1 [2]. In particular, we can write such g as

g = ds2 + r(s)2dΩ2,

where dΩ2 = dθ2 + sin2 θ dϕ2 is the standard round metric on Sn−1, and r is a positive function [2].
As noted in [2], the regions in which r′(s) = 0 correspond to the regions where the symmetric spheres
are totally geodesic, and the regions where r(s) is constant correspond to g being cylindrical (i.e., the

1The sign convention in do Carmo [1] is the opposite as the one used here.
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Riemann product of a sphere and an interval). Now, in the regions where r′(s) ̸= 0, we may take r as a
new coordinate and express the metric g as

g =
dr2

U(r)
+ r2dΩ2, (3)

where U(r) is again some positive function [2]. As described in [2], the scalar curvature of g above is

scalg =
n− 1

r2
[(n− 2)(1− U(r))− rU ′(r)] . (4)

Note that, if we require the scalar curvature above to be constant, say scalg ≡ κ, we obtain an inhomoge-
neous linear ODE in U . As shown in [2], all spherically symmetric metrics with constant scalar curvature
scalg ≡ κ can in fact be written as in Equation (3) (up to diffeomorphism) with

U(r) = 1− 2m

rn−2
− κ

n(n− 1)
r2, (5)

where m ∈ R is a constant and the factor of 2 multiplying it is a convenient convention. When κ > 0,
these metrics are called Schwarzschild-de Sitter ; when κ = 0, these metrics are called Schwarzschild ; and
when κ < 0, these metrics are called Schwarzschild-anti-de Sitter [2].

Definition 1. Define the Schwarzschild metric of mass m as

gm :=

(
1− 2m

rn−2

)−1

dr2 + r2dΩ2. (6)

Note that if m = 0, then gm is simply the Euclidean metric (in “hyperspherical” coordinates). Because
of this, we call the Euclidean space Rn the Schwarzschild space of mass zero [2].

Figure 1: Schwarzschild space for m > 0.

For m > 0, the metric gm is clearly complete in the limit r ↗ ∞. On the other hand, there is a

singularity at r = (2m)
1

n−2 . Luckily, this is not a “geometric singularity” [2]. Rather, it is a singularity
in the “coordinate choice,” much like r = 0 in spherical coordinates in R3. More precisely, as described

in [2], to see that r = (2m)
1

n−2 is not a geometric singularity, we can change the radial coordinates and
write

gm = [u(ρ)]
4

n−2
(
dρ2 + ρ2dΩ2

)
, (7)

where
u(ρ) = 1 +

m

2ρn−2
.

Remark 1. By writing the metric gm as in Equation (7), we can clearly see the conformal factor that relates
gm to the Euclidean metric. Switching to the standard coordinates (x1, . . . , xn) on Rn with ρ = |x|, we
can write gm on Rn \ {0} with

(gm)ij = [u(x)]
4

n−2 δij ,
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where
u(x) = 1 +

m

2|x|n−2
.

In Physics, these coordinates are sometimes called isotropic coordinates for the Schwarzschild metric.
The new expression for gm (Equation (7)) defines a metric on all of (0,∞) × Sn−1 since gm is well-

defined for all ρ > 0. Moreover, as argued in [2], one can show that ((0,∞)× Sn−1, gm) is complete.
Finally, we note that for m < 0, the geometry of the metric gm becomes singular as r goes to zero.

This means that we cannot extend gm to a smooth Riemannian metric on a bigger space [2].

3.2 Asymptotically flat manifolds

Note that for any Schwarzschild metric, as ρ goes to zero or infinity, the metric asymptotically looks like
the Euclidean metric. In particular, for large enough ρ, the metric gm differs from the Euclidean metric
by a factor of order O(ρ2−n). In the discussion that follows, these Schwarzschild spaces are going to serve
as model spaces for the study of asymptotically flat manifolds with nonnegative scalar curvature. But
first, following [2], we define the class of manifolds that asymptotically look flat.

Definition 2 (Asymptotically flat). A Riemannian manifold (Mn, g), n ≥ 3, is asymptotically flat if there
exists a bounded set K such that M \K is a finite union of ends M1, . . . ,Ml so that, for each Mj , there
is a diffeomorphism

ϕj : Mj −→ Rn \B1(0),

where B1(0) is the closure of the unit ball, with the property that, if we view each ϕj as a coordinate
chart with coordinates (x1, . . . , xn), then, in that chart, we have

gij(x) = δij +O2(|x|−q),

for some q > n−2
2 . We note that O2(|x|−q) is some (unspecified) function in the weighted space C2

−q
2. The

coordinate charts ϕj are called asymptotically flat coordinate charts and q is referred to as the asymptotic
decay rate of g.

Example 1. The Schwarzschild space of mass m > 0 (see Equation (7)) is asymptotically flat [2].

Remark 2. In addition, for reasons that will soon become clear, we ought to require the scalar curvature
to be integrable over (Mn, g). For instance, as explained in [2], if have an asymptotic decay of q = n− 2,
we have that scalg = O(|x|−n), which does not guarantee that scalg ∈ L1.

Figure 2: Asymptotically flat manifold with 3 ends.

Finally, we define a class of manifolds that lie within the class of asymptotically flat manifolds [2].

2A function f ∈ C2
−q if |f(x)|+ |x||∂f(x)|+ |x|2|∂2f(x)| < C|x|−q for some C ∈ R. In this case, ∂ represents the derivatives

with respect to the background Euclidean metric.
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Definition 3 (Asymptotically Schwarzschild). A Riemannian manifold (Mn, g), n ≥ 3, is asymptotically
Schwarzschild if there exists a bounded set K such that M \ K is a finite union of ends M1, . . . ,Ml so
that, for each Mj , there exists mj ∈ R and a diffeomorphism

ϕj : Mj −→ Rn \B1(0),

such that, viewing each ϕj as a coordinate chart with coordinates (x1, . . . , xn), we have

gij(x) =

(
1 +

2mj

n− 2
|x|2−n

)
δij +O2(|x|1−n).

The real number mj is called the mass of the end Mj .

It is straightforward to see that the Schwarzschild space of mass m has 2 ends and is asymptotically
Schwarzschild according to the definition above.

3.3 ADM mass

Note that, in the definition of asymptotically Schwarzschild manifolds (Definition 3), the mass parameter
captures the deviation of g from being Euclidean. We would like to somehow extend the notion of “mass”
so that we can study the larger class of asymptotically flat manifolds in the same way; namely, we want
to explicitly find by how much asymptotically flat metrics differ from the Euclidean metric via a mass
parameter. This generalization of the concept of mass is called the ADM mass (named after Arnowitt,
Deser, and Misner) [2].

In order to understand what “mass” truly is, we need to go back to Newtonian gravitation. In this
theory of gravitation, the effects of gravity are commanded by the gravitational potential U : R3 → R.
In particular, gravity affects test particles by making their acceleration equal to − gradU . Now, the
gravitational potential U is determined by how matter is distributed in the universe. This distribution of
matter is described by the mass density function ρ : R3 → R via Poisson’s equation

∆U = 4πρ,

where we set Newton’s gravitational constant G to be 1. We also require U(x) to vanish as |x| → ∞. So,
if ρ has a fast enough decay, the solution to Poisson’s equation can be written as

U(x) = −
∫
R3

ρ(y)

|x− y|
dy. (8)

For instance, we can represent a “point mass” m located at x0 ∈ R3 by taking ρ(x) to be the Dirac delta
function mδ(x− x0)

3. In this case, the gravitational potential created by this point mass is given by

Um,x0
(x) = − m

|x− x0|
. (9)

Another classical result from Newtonian gravity is the following [2, Theorem 3.8].

Theorem 1 (Newtonian shell theorem). If ρ is compactly spported and purely radial, then U(x) = − m
|x|

for all x outside the support of ρ, where m =
∫
R3 ρ(x) dx.

Proof. Note that U must also be purely radial. So, U is a purely radial harmonic function outside the
support of ρ. Every such function that decays at infinity can be written as U(x) = − m

|x| , for some m ∈ R.
Lastly, ∫

R3

ρ(x) dx =

∫
R3

1

4π
∆U dx = lim

r→∞

∫
Sr

1

4π

∂U

∂r
dµSr

= lim
r→∞

∫
Sr

1

4π

m

|x|2
dµSr

= m,

where Sr denotes the sphere of radius r centered at the origin.

3If we allow ρ to be a distribution, the same results still hold [2].
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Now, consider some density ρ that is supported in |x| < r1 but is not spherically symmetric. Again,
U(x) is harmonic on |x| ≥ r1. So, by expanding U in spherical harmonics, we obtain that

U(x) = −m

|x|
+O1(|x|−2),

for some m ∈ R [2]. So,∫
R3

ρ(x) dx =

∫
R3

1

4π
∆U dx = lim

r→∞

∫
Sr

1

4π

∂U

∂r
dµSr

= lim
r→∞

∫
Sr

1

4π

(
m

|x|2
+O

(
|x|−3

))
dµSr

= m.

Thus, m =
∫
R3 ρ(x) dx once more. Historically, this integral was defined as the total mass of the system.

However, note that the behavior of the highest-order term in U(x) for large enough x is precisely the
same as that of a point mass m at the origin. That is, the total mass of the system encodes information
about the asymptotic behavior of U . It so happens that this mass is equal to the integral of ρ, but the
integral itself has no clear physical meaning. For instance, test particles very close to the support of ρ are
completely indifferent to the total mass. That is, only when a test particle is close enough to infinity it
can feel the total mass. So, it is much more natural to define the mass of a system as

m := lim
r→∞

1

4π

∫
Sr

∂U

∂r
dµSr . (10)

The equality m =
∫
R3 ρ(x) dx is just a useful consequence of the linearity of the Laplacian [2].

Now, we steer away from Newtonian gravity and into a simple model of a 3-dimensional (isolated)
system in general relativity. Consider, at an instant in time, a complete asymptotically flat manifold
(M3, g). Similar to the discussion above, we can consider the distribution of matter to be a mass density
function ρ : M → R [2]. But, in general relativity, ρ only constraints the metric g (instead of defining it)
via

scalg = 16πρ;

i.e., the mass density is the scalar curvature (up to a constant) [2]. Here, the asymptotically flatness is a
sort of boundary condition [2]. We are still interested in deriving what the total mass is (by the previous
discussion, we know that it should not be

∫
M

ρ dµg) [2]. Following the derivation in [2], if scalg were a

“purely” linear operator of g, then the total mass of the system would simply be 1
16π

∫
M

scalg dµg (note
that we are using that the scalar curvature is integrable over M , cf. Remark 2). If the scalar curvature is
approximately linear (i.e., when (M3, g) is very close to the background Euclidean space (R3, g), then it
can be approximated by its linearization at gij = δij [2]. Then, using results from [2, 1.18], we define the
mass to be

m :=
1

16π

∫
R3

D scal |g(g − g) dµ

=
1

16π

∫
R3

[
−∆(tr g) + div (div g)

]
dµ

= lim
r→∞

1

16π

∫
Sr

[
div g − d(tr g)

]
ν dµSr

= lim
r→∞

1

16π

∫
Sr

3∑
i,j=1

(∂igij − ∂jgii)
xj

|x|
dµSr

,

(11)

where ν is the Euclidean outward pointing normal to Sr [2]. The formula above is precisely what we
needed (i.e., the total mass as an asymptotic integral involving g), and it is true for any asymptotically
flat (M3, g) since all such metrics are close to Euclidean at infinity [2].

Now, we are ready to define the ADM mass of an asymptotically flat manifold [2, 3.9].

Definition 4 (ADM mass). Given an asymptotically flat manifold (Mn, g) with ends M1, . . . ,Ml, the
ADM mass of the end Mj is

mADM(Mj , g) := lim
r→∞

1

2(n− 1)ωn−1

∫
Sρ

[
div g − d(tr g)

]
ν dµSρ

, (12)

where the barred quantities are all computed in the background Euclidean metric determined by the
asymptotically flat coordinate chart ϕj (see Definition 2); Sρ is the sphere of radius ρ and dµSρ

is its
volume measure induced by the Euclidean metric; ν is the Euclidean outward pointing normal to Sρ; and
ωn−1 is the volume of the unit (n− 1)-sphere.
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We can write the ADM mass formula (Equation (12)) explicitly in coordinates as

mADM(Mj , g) = lim
r→∞

1

2(n− 1)ωn−1

∫
Sρ

3∑
i,j=1

(∂igij − ∂jgii)
xj

|x|
dµSρ

. (13)

Remark 3. It is shown in [2] that, even though the ADMmass seems to depend on the choice of coordinates,
the ADM mass is a geometric invariant given Definition 2 of asymptotic flatness.

As proven in [2, 3.14], the ADM mass can also be written in terms of curvature.

Theorem 2. Given an asymptotically flat manifold (Mn, g) with ends M1, . . . ,Ml, the ADM mass of the
end Mj can be written as

mADM(Mj , g) = lim
i→∞

−1

(n− 1)(n− 2)ωn−1

∫
Σi

G(X, ν) dµΣi
, (14)

where G := Ric− 1
2 scal g is the Einstein tensor; X is the vector field xi∂i on Mj ≃ Rn \B1(0); and Σi is

any sequence that exhausts Mj and is such that µΣi
(Σi) ≤ C(infx∈Σi |x|)n−1 for some C ∈ R that does

not depend on i. As before, the barred quantities are computed in the background Euclidean metric.

Remark 4. Since gij − δij decays at infinity, we can replace ν and dµΣi
with ν and dµΣi in Theorem 2 [2].

Remark 5. If (M, g) has an asymptotic decay rate q = n − 2, then Theorem 2 gives a coordinate-
independent formula for the ADM mass:

mADM(Mj , g) = lim
ρ→∞

−1

(n− 1)(n− 2)ωn−1

∫
Sρ(p)∩Mj

ρG(ν, ν) dµSρ(p),

for all p ∈ M , where Sρ(p) is the geodesic ball around p [2].
Finally, we may state the positive mass theorem which was conjectured in 1961 as soon as the concept of

ADM mass was formulated [2]. Here, we refer to this version of the positive mass theorem as Riemannian
so there is no confusion with more general formulations of the same theorem using initial data sets [2].

Theorem 3 (Riemannian positive mass theorem). Let (M, g) be a complete asymptotically flat manifold
with nonnegative scalar curvature. Then, the ADM mass of each end of M is nonnegative.

The 3-dimensional version of the theorem above was proven by Schoen and Yau in 1979 in [3]. They
soon generalized the result to dimension less that 8. Nowadays, we know much more general results to be
true, but we do not investigate these (much more involved) generalizations in this article. Schoen’s and
Yau’s paper [3] also proved a rigidity result in positive mass.

Theorem 4 (Positive mass rigidity). Let (M, g) be a complete asymptotically flat manifold with nonnega-
tive scalar curvature. If the ADM mass of any end of (M, g) is zero, then (M, g) is isometric to Euclidean
space.

Instead of presenting the (beautiful yet lengthy) proofs for Theorems 3 and 4, we study particular
cases of these theorems in the following section.

4 Special cases of the positive mass theorem

4.1 Spherically symmetric case

The first case we consider is the spherically symmetric case as in [2, 3.20].

Proposition 1. Let g be a complete asymptotically flat metric on Rn that is spherically symmetric in the
sense that, under the (diffeomorphic) identification Rn \ {0} ≃ (0,∞)× Sn−1, we can write

g =
dr2

U(r)
+ r2dΩ2,

for some positive smooth function U .
If g has nonnegative scalar curvature, then it has nonnegative ADM mass. Moreover, if the ADM mass

is zero, then g is Euclidean.
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Proof. As noted in [2], when we write g as above, we implicitly assume that there are no symmetric
minimal spheres around the origin. Now, from Equations (4) and (5), we have that

scalg =
n− 1

rn−1

d

dr

[
rn−2(1− U(r))

]
So, if scalg ≥ 0 everywhere, then 1

2r
n−2(1 − U(r)) is nondecreasing for all r > 0. Moreover, since we

are assuming that g can be extended to a complete metric on Rn, we must have that U is bounded as r
approaches zero. Thus, since 1

2r
n−2(1− U(r)) is nondecreasing for all r > 0,

0 = lim
r→0

rn−2

2
(1− U(r)) ≤ lim

r→∞

rn−2

2
(1− U(r)) = mADM(g),

as desired. Finally, if mADM = 0, then rn−2(1 − U(r)) must vanish (since it is nondecreasing), hence
U(r) ≡ 1; i.e., g is Euclidean.

4.2 Conformally flat case

Now, we consider the globally conformally Euclidean case [2, 3.22].

Proposition 2. Let u be a positive smooth function on Rn such that

u(x) = 1 +O2(|x|−q),

for some q > n−2
2 , and such that ∆gu is integrable. Observe that [2, 3.12] implies that

(
Rn, gij = u

4
n−2 δij

)
is a complete asymptotically flat manifold.

If g has nonnegative scalar curvature, then it has nonnegative ADM mass. Moreover, if the ADM mass
is zero, then g is Euclidean.

Proof. From [2, 1.8], we have that

scalg = −4(n− 1)

n− 2
u− n+2

n−2∆u,

where the bar once again indicates the Euclidean background metric δij . Moreover, from [2, 3.12],

mADM(g) = mADM(δ) + lim
ρ→∞

2

(n− 2)ωn−1

∫
Sρ

−∂u

∂r
dµSρ

=
2

(n− 2)ωn−1

∫
Rn

−∆u dµ

=
2

(n− 2)ωn−1

∫
Rn

n− 2

4(n− 1)
u

n+2
n−2 scalg dµ.

(15)

Thus, clearly, if scalg ≥ 0, then mADM ≥ 0. Finally, for the rigidity, if mADM = 0, then ∆u must vanish
by the equation above; i.e., u is harmonic on Rn. Since u approaches 1 at infinity (by definition), u ≡ 1
by the maximum principle.

Remark 6. If we linearize the the partial differential operator that scal represents here at u = 1, we find

that, for u ≈ 1, scalg ≈ − 4(n−1)
n−2 ∆u. Thus, setting U := 2(1− u), we obtain a Newtonian limit as u → 1.

In particular, if n = 3, then scalg = 16πρ with u(∞) = 1 (from Section 3.3) “reduces” to ∆U = 4πρ with
U(∞) = 0, as u → 1.

4.3 Two-dimensional model

Here we study the 2-dimensional incarnation of the positive mass theorem, as described in [4]. As noted
in [2], this is not a special case of the positive mass theorem, but rather a “toy model.” As it so happens,
asymptotic flatness is too strong of an assumption for surfaces with nonnegative Gauss curvature to be
interesting. In turn, we consider asymptotically conical surfaces [4].
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Definition 5 (Asymptotically conical surfaces). A Riemannian surface (M2, g) is asymptotically conical
if there exists a bounded set K such that M \K is a finite union of ends M1, . . . ,Ml with the property
that, for each Mj , there exists a diffeomorphism

ϕj : Mj −→ R2 \B1(0) ≃ (1,∞)× S1,

so that, under ϕj ,
g = dr2 + r2dθ2 +O1(r

−q),

for some q > 0; where r is a coordinate for (1,∞), and dθ2 is the metric on S1 with length 2πα, for some
α > 0.

Remark 7. The value α is called the cone angle of that end [4].

Remark 8. By O1(r
−q), we mean a 2-tensor τ such that |τ |g + r|grad τ |g = O(r−q), where the barred

quantities are computed with respect to the background metric g = dr2 + r2dθ2 [2].

Theorem 5 (Two-dimensional counterpart of the positive mass theorem). Let (M2, g) be a connected
complete asymptotically conical surface with nonnegative Gauss curvature. Then, each end of M has cone
angle at most 1. Finally, if any cone angle is equal to 1, then (M, g) is the Euclidean plane.

Remark 9. The cone angle somewhat plays an analogous role to the mass in higher dimensions [4].

Proof. Denote by Mρ the (compact) region whose boundary ∂Mρ is the union of the spheres {r = ρ} in
each end of M . By Gauss-Bonnet,∫

Mρ

Kg dµg = 2πχ(Mρ)−
∫
∂Mρ

κg ds.

Since we assumeM to be connected, we have that 2πχ(Mρ) ≤ 2π. Moreover, since (M, g) is asymptotically

conical, for ∂Mρ, κg = 1
ρ + O(ρ−q−1). We also have that the length of ∂Mρ is 2πρ

∑l
j=1 αj + O(ρ1−q).

Thus, ∫
Mρ

Kg dµg ≤ 2π

1−
l∑

j=1

αj

+O(ρ−q).

In the limit ρ → ∞, we find that
∑l

j=1 αj ≤ 1, as desired.

As for rigidity, if the cone angle of one the ends is equal to 1, then this must be the only end. Moreover,
we must have that

∫
M

Kg dµg = 0. This implies that Kg ≡ 0; i.e., M is flat. Therefore, (M, g) has one
planar end and is flat, hence (M, g) must be Euclidean [2, 2.33].
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