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Numerical Methods for Stochastic Differential Equations

Abstract

We study the Euler-Maruyama and Milstein numerical methods to solve an autonomous scalar Itô stochastic

differential equation in the context of machine learning minimization. We present a brief introduction to Brownian

motion and stochastic integration as well as an analysis of the numerical stability of those methods accompanied by

numerical simulations motivated by standard ODE methods.

1 Introduction

Stochastic differential equations (SDEs) are, loosely speaking, differential equations in which one or more terms are

stochastic processes which produce a solution that is also a stochastic process. Precisely because SDEs combine

both random and deterministic effects into a model that is capable of describing the time evolution of degrees of

freedom, they play a central role in science and engineering. In particular, SDEs serve as models for molecular

dynamics, quantum chemistry, Bayesian statistics, weather forecasting, machine learning, and econometrics.

Now, as discussed in [5], SDEs can also play an important role in solving minimization problems, especially in

machine learning. These minimization problems are usually of the form

min
x∈Rd

f(x), f(x) :=
1

p

p∑
i=1

fi(x), (1)

where fi : R
d → R for i = 1, . . . , p. In common machine learning terms, x is the vector of trainable parameters; f

represents the total loss function with each fi being the loss due to the i-th training sample; and p is the training

sample size, which can be extremely large [5]. This means that using standard gradient descent – which requires p

gradient evaluations per step – is prohibitively expensive when p ≫ 1. A proposed alternative to avoid this issue

is the so called stochastic gradient descent, which replaces the full gradient ∇f by a “sampled version” of it that

serves as its (unbiased) estimator. More precisely, the simplest stochastic gradient descent is of the form

xj+1 = xj − η∇fUj (xj), j ∈ N, (2)

where η ∈ R is the learning rate, and {Uj}j∈N is a collection of i.i.d. uniform random variables taking values in

{1, . . . , p}. This method in Equation (2) has the advantage that, after sampling only a few indices from the full

gradient ∇f , its computational complexity is independent of p per iterate [5]. For this reason, stochastic gradient

descent has become a widely used algorithm in large scale problems.

However, even though there are many convergence results for stochastic gradient descent methods, the majority of

these results are upper-bounds for strongly convex objective functions, which often do not characterize the behavior

of systems in real-world settings [5]. So, translating the theoretical understanding of these methods into actual

algorithms can be a very hard task. An alternative approach proposed by [5] is to rewrite the stochastic gradient

descent of Equation (2) as the SDE

dXt = F (Xt) dt+G(Xt) dBt, (3)

where F,G are a real-valued functions, and (Bt)t≥0 is a standard Brownian motion. As shown in [5], under mild

assumptions on f , the solution of the SDE above converges to the solution of the minimization problem in the weak

topology. The advantage of considering this SDE instead of the stochastic gradient descent is that we can employ

the exuberant flora of numerical methods for SDEs to study a larger range of real-world problems.

Now, with this connection between minimization problems and SDEs, certain natural questions appear about

the stability, accuracy, and bias of numerical methods for SDEs. For instance, when modeling scenarios where

long-time trajectories are relevant, understanding and predicting the stability of methods are extremely important;
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e.g., so that we can increase the time steps in our scheme and trade accuracy for physical insights that would

not be available otherwise (see [5] for more examples). In this sense, the goal of this article is to understand the

long-time moment stability of two well-known methods for approximating solutions to SDEs: the Euler-Maruyama

method and the Milstein method. The analysis in this article will be focused on the family of SDEs used by [5] to

rewrite minimization problems (see Section 2 of [5]). Finally, we implement these methods, and perform numerical

experiments with different time step sizes to verify the analytic findings.

Outline. In Section 2, we review a few background concepts from probability and stochastic calculus that are useful

throughout the paper. In Section 3, we introduce the Euler-Maruyama and Milstein methods; we implement them

to obtain the Ornstein-Uhlenbeck process as the solution to an SDE; and, lastly, we prove a few theoretical results

on the long-time stability and accuracy of these methods. Finally, in Section 4, we perform numerical experiments

to verify the theoretical findings of the previous section.

2 Preliminaries: Brownian Motion and Stochastic Calculus

In this section, we review a few concepts that will be relevant throughout this article when studying stochastic

processes (a much more detailed presentation of these topics may be found in [4] and [7]). Stochastic processes

describe dynamical systems that evolve probabilistically with time. More precisely, let (Ω,F ,P) be a probability

space and (E,G) be a measurable space. A stochastic process is a collection of random variables (Xt : t ≥ 0) such

that, for each t ≥ 0, Xt is a random variable from (Ω,F ,P) to (E,G). The set E is called the state space of Xt,

and Ω is called the sample space. Note that a stochastic process Xt is a function of both t ≥ 0 and ω ∈ Ω. For a

fixed sample point ω ∈ Ω, we call the function t 7→ Xt(ω) a sample path of X.

For p ≥ 1, we denote by Lp(Ω,F ,P), or simply Lp when the underlying probability space is clear, the space of

real random variables X such that |X|p is integrable (with the usual identification of random variables that are equal

a.s.), and we equip it with the usual norm. For n ∈ N, define as µn := E[Xn] the n-th moment of a random variable

X, where E[·] denotes the expectation of a random variable. A real random variable X is said to be Gaussian with

mean m and standard deviation σ2, denoted X ∼ N(m,σ2), if its law has density

pX(x) =
1

σ
√
2π

e−(x−m)2/2σ2

. (4)

Now, one of the most important stochastic processes is Brownian motion (also known as Wiener process). We say

that a real random process (Bt)t≥0 is a (standard) Brownian motion if the following two conditions hold:

(i) B0 = 0 a.s., and, for every choice of 0 = t0 < t1 < · · · < tp, the increments Bti − Bti−1 , 1 ≤ i ≤ p, are

independent and distributed as N(0, ti − ti−1);

(ii) All sample paths of B are continuous.

Define a filtration (Ft)t≥0 as a collection of σ-algebras on (Ω,F ,P) such that Fs ⊂ Ft for every s ≤ t. Now,

we say that a real-valued random process (Xt)t≥0 such that Xt ∈ L1 for every t ≥ 0 is an adapted martingale

with respect to a filtration (Ft)t≥0 if Xt is Ft-measurable for all t ≥ 0, and we have that E[Xt|Fs] = Xt for

every 0 ≤ s < t. As an example, Brownian motion (Bt)t≥0 is a martingale adapted to the canonical filtration

Ft = σ(Bs : s ≤ t).

Let (Xt)t≥0 be a martingale. We define the (Itô) stochastic integral as

∫ t

0

Xs dXs := lim
n→∞

pn∑
i=0

Xtni
(Xtni+1

−Xtni
), (5)

where the limit converges in probability, and the partitions 0 = tn0 < tn1 < · · · < tnpn
= t of [0, t] get more and

more refined as n ↗ ∞. It is possible to define more general stochastic integrals, but the integral in Equation (5)
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Figure 1: Plot of 10 individual paths of a standard Brownian motion and their mean at each time.

is enough for the purposes of this article. For convergence results and in-depth analysis of stochastic integrals, we

direct the reader to [4] and Chapter 3 of [7].

Finally, the autonomous scalar Itô SDE is given by

dXt = f(Xt) dt+ g(Xt) dBt, t ∈ [0, T ], (6)

where f, g are real-valued functions. Note that, if g ≡ 0 (i.e., no noise coefficient), this becomes a familiar deter-

ministic ODE
dXt

dt
= f(Xt), t ∈ [0, T ]. (7)

It is worth noting that the form in which Equation (6) is written is just a notational convenience since the “infinites-

imals” there have no mathematical meaning. We can write Equation (6) more precisely as

Xt −X0 =

∫ t

0

f(Xs) ds+

∫ t

0

g(Xs) dBs, t ∈ [0, T ]. (8)

3 Euler-Maruyama and Milstein Methods

In this section we introduce the Euler-Maruyama and Milstein methods to iteratively approximate solutions to SDEs

following Chapter 5 of [7] and [3]. Later in this section, we analyze the numerical stability of those methods by

comparing the first and second moments of the theoretical solutions with the moments of the approximate solutions.

For the purposes of this article, we consider the scalar autonomous Itô SDE given by

dXt = f(Xt) dt+ g(Xt) dBt, t ∈ [0, T ], (9)
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with a deterministic initial condition X0 ∈ [0, 1], where (Bt)t≥0 is a standard Brownian motion, and the functions

f, g are affine and do not depend on time. In order to approximate solutions, we discretize our time interval [0, T ]

into n equispaced nodes so that the length of each time subinterval is h = T/n. By doing this, we generate a

time grid tj = jh, for j = 0, . . . , n. To simplify notation, let xj denote the approximate solution at time tj for

j = 0, . . . , n. Moreover, let

fj := f(xj) and f ′
j := f ′(xj), j = 0, . . . , n, (10)

and similarly for gj and g′j . Lastly, in order to simulate the Brownian steps, define a sequence (∆Bj)
n
j=0 of i.i.d.

random variables ∆Bj ∼ N(0, h) for j = 0, . . . , n.

The Euler-Maruyama method (abbreviated here as EM) is given by

xj+1 = xj + fjh+ gj∆Bj , j = 0, . . . , n. (11)

The Milstein method (abbreviated here as Mi) is given by

xj+1 = xj + fjh+ gj∆Bj +
1

2
g′jgj [(∆Bj)

2 − h], j = 0, . . . , n. (12)

Note that EM is very similar to the well-known Euler method for iteratively approximating solutions to ODEs; in

particular, EM takes Euler’s method and adds a stochastic correction. Moreover, Mi takes the formula for EM and

adds another correction term that depends on (∆Bj)
2, in close resemblance to Itô’s formula. As shown in Chapter

5 of [7] and Section 2 of [3], the convergence of the EM method is of order 1 (with respect to the weak topology)

and the convergence of the Mi method is of order 1 (also in the weak topology).

3.1 Example: Ornstein-Uhlenbeck Process

Now, as an example, we implement the methods above to numerically approximate the solution to a well-known

SDE. Consider the following initial value problem

dXt = −Xt − µ

τ
dt+ σ

√
2

τ
dBt, X0 = 0, for t ∈ [0, T ], (13)

where µ, τ, σ ∈ R+ are nonnegative constants, and (Bt)t≥0 is a standard Brownian motion. The solution to the

SDE above is called the Ornstein-Uhlenbeck process, and it is commonly used in physics to model the velocity of a

Brownian particle (of positive mass) under a dissipative force [Chapter 3 of 7].

See Figure 2 for Ornstein-Uhlenbeck processes numerically computed for different choices of constants. For these

simulations, we considered the time interval [0, 1], and we discretized it with n = 1000 equispaced nodes; i.e., the

time steps used were of length h = 0.001. In this case, the coefficient functions f, g are

f(x) = −x− µ

τ
, g(x) = σ

√
2

τ
. (14)

So, the iterative scheme for both EM and Mi is given by

xj+1 = xj +

(
−xj − µ

τ

)
h+ σ

√
2

τ
∆Bj , j = 0, . . . , n, (15)

since g′ = 0. Now, even though both EM and Mi produce the same iterative scheme in this case, we can clearly see

the non-deterministic character of the solution to this differential equation. As indicated by Figure 2, the larger the

magnitude of the dBt term, the “noisier” the solution process. This is expected since the Brownian motion term is

responsible for introducing “randomness” to the equation.
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Figure 2: Approximate solutions for Equation (13) with different parameters τ and σ. The same
mean µ = 10 and initial condition X0 = 0 were used for the simulations presented in this figure. The
plots clearly show that the solution seems “more deterministic” when the dt term dominates, and

“noisier” when the dBt term dominates.

3.2 Stability

Now, we turn our attention to the asymptotic moment stability of the methods EM and Mi described above following

the discussions in [2], [6], and Chapter 5 of [7]. In order to study the asymptotic stability of EM and Mi with different

time steps h, we define the m-th moment of the approximate solution xj at the j-th time step as

µ
(m)
j := E [(xj)

m] , j = 0, . . . , n. (16)

As in [6], we say that a numerical scheme with time step h of an SDE is asymptotically stable for the m-th moment

if we have that

lim sup
j→∞

∣∣∣µ(m)
j − E

[
(Xtj )

m
]∣∣∣ < ∞, (17)
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where Xtj is the continuous-time solution to the SDE at time tj . Moreover, following [7], we say that a numerical

scheme is asymptotically O(hj) accurate for the m-th moment if, for sufficiently small h, we have that

lim sup
j→∞

∣∣∣µ(m)
j − E

[
(Xtj )

m
]∣∣∣ = O(hj). (18)

Note that, by the above definitions, in order for a numerical scheme to be asymptotically accurate, it must be stable

for the same moment [Chapter 5, 7]. For the purposes of this article, we will be mostly interested in first and second

asymptotic moment stability and accuracy.

Finally, following the case reductions in [3], [5], and [Chapter 5, 7], we study the asymptotic moment stability

and accuracy of EM and Mi for the SDE

dXt = −Xt dt+ (1− ηXt) dBt, (19)

where |η| <
√
2 and (Bt)t≥0 is a standard Brownian motion; that is, Equation (6) with f(x) = −x and g(x) = 1−ηx.

As shown in Section 3.3 of [3], the first two moments of the continuous-time solution process of Equation (19) are

E[Xt] = X0e
−t, (20)

and

E
[
(Xt)

2
]
=


X2

0e
−t(2−η2) +

1

2− η2

(
1− e−t(2−η2)

)
+

2ηX0

1− η2

(
e−t − e−t(2−η2)

)
, if η ̸= ±1,

X2
0e

−t − e−t + 1± 2X0te
−t, if η = ±1

. (21)

As proven also in Section 3.3 of [3], provided that η2 < 2, we have that E[(Xt)
2] → 1/(2− η2) as t → ∞.

3.2.1 Asymptotic Moment Stability of Euler-Maruyama (EM)

Consider the SDE in Equation (19). Taking expectations on the definition of EM (Equation (11)), and using the

fact that ∆Bj ∼ N(0, h) is independent of xj for all j = 0, . . . , n, we obtain

µ
(1)
j+1 = E[xj+1] = E[xj − xjh+ (1− ηxj)∆Bj ]

= E[(1− h)xj + (1− ηxj)∆Bj ]

= (1− h)E[xj ]

= (1− h)µ
(1)
j .

(22)

Thus, µ
(1)
j = x0(1− h)j . Note that, similarly to Euler’s method for approximating deterministic ODEs, in order to

have asymptotic stability, we must require the time step h to be such that |1− h| < 1; i.e., h ∈ (0, 2). If this is the

case, then µ
(1)
j → 0 as j → ∞, so EM here is first moment asymptotically stable and unbiased [3, Chapter 5 of 7].

Similarly, we have that the second moment of EM’s approximate solution to Equation (19) is

µ
(2)
j+1 = E

[
(xj+1)

2
]
= E

[
(1− h)2x2

j

]
+ E

[
(1− ηxj)

2(∆Bj)
2
]

= µ
(2)
j

[
(1− h)2 + hη2

]
+ 2ηhµ

(1)
j + h.

(23)

Note that we now have a recursive formula for the second moment. So, using the standard linear analysis method

introduced by [1, 2], EM is second moment asymptotically stable here whenever

1 >

∣∣∣∣∣ ∂

∂µ
(2)
j

(
µ
(2)
j

[
(1− h)2 + hη2

]
+ 2ηhµ

(1)
j + h

)∣∣∣∣∣ = ∣∣(1− h)2 + η2h
∣∣ ; (24)
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i.e., whenever

0 < h < 2− η2. (25)

As expected, second moment stability is more restrictive than first moment stability.

Lastly, under the constraints on h obtained above, this EM scheme is asymptotically stable for the first and

second moments. Thus, µ
(2)
j converges to, say, µ

(2)
∞ as j → ∞, and we have that

µ(2)
∞ = µ(2)

∞
[
(1− h)2 + hη2

]
+ h (26)

since µ
(1)
j → 0 as j → ∞ under the constraints above. So, by Equation (21),

µ(2)
∞ =

1

2− h− η2
= E[X2

tj ] +O(h); (27)

i.e., this EM scheme is asymptotically first order accurate for the second moment [3].

3.2.2 Asymptotic Moment Stability of Milstein (Mi)

Once again, consider the SDE in Equation (19). Now, the Mi method defined in Equation (12) gives

xj+1 = (1− h)xj + (1− ηxj)∆Bj −
1

2
η(1− ηxj)((∆Bj)

2 − h). (28)

So, since xj is independent of ∆Bj for all j ∈ N, after taking expectations on both sides of the equation above,

we obtain that µ
(1)
j+1 = (1 − h)µ

(1)
j , just as for EM. That is, µ

(1)
j = x0(1 − h)j , as before. With this, we again find

that, provided that h ∈ (0, 2), this Mi scheme is asymptotically first moment stable (and unbiased since µ
(1)
j → 0

as j → ∞) [6, 3, Chapter 5 of 7].

Now, we turn to the second moment of this Mi. After squaring and taking expectations on Equation (28), we

find that

µ
(2)
j+1 = E[x2

j+1] = (1− h)2µ
(2)
j + h

(
1 + 2ηµ

(1)
j + η2µ

(2)
j

)
+

1

2
η2h2

(
η2µ

(2)
j + 2ηµ

(1)
j + 1

)
. (29)

Thus, following [2, 6] and assuming that h ∈ (0, 2) so that µ
(1)
j → 0, Mi is asymptotically stable for the second

moment if

1 >

∣∣∣∣∣ ∂

∂µ
(2)
j

(
1− h)2µ

(2)
j + h

(
1 + 2ηµ

(1)
j + η2µ

(2)
j

)
+

1

2
η2h2

(
η2µ

(2)
j + 2ηµ

(1)
j + 1

))∣∣∣∣∣
=

∣∣∣∣1 + h2

(
1 +

η4

2

)
− h

(
2− η2

)∣∣∣∣ ;
(30)

i.e., if

0 < h <
2− η2

1 + η4

2

. (31)

Comparing the above condition on h for Mi to be second moment asymptotically stable with the one for EM, we

see that the condition for Mi is more restrictive than for EM (cf. Equation (25)).

Finally, note that, when Mi is asymptotically second moment stable here, in the limit,

µ(2)
∞ =

hη2

2 + 1

2− η2 − h
(
1 + η4

2

) =
1

2− η2
+O(h). (32)

Thus, this Mi is asymptotically first order accurate for the second moment [6].
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4 Numerical Experiments

We performed a series of numerical simulations (see Appendix A for the code used) to verify the analytic results

presented in the previous section about the stability and accuracy of EM and Mi in the setting of Equation (19).

All experiments were performed in a laptop with 16 GB of RAM and an Intel 8th Gen. Core i7-8550U CPU. We

considered the time interval [0, 20] for all the numerical experiments that follow. See Figure 3 for a comparison

between the approximate first moments of EM and Mi with the theoretical first moment in Equation (20). For

these numerical simulations, we used values of η ∈ {0.3, 1.4} and time steps h ∈ {0.1, 0.01, 0.001}. From the plots

in Figure 3, we can clearly see that EM and Mi are asymptotically first moment stable and accurate here for both

values of η, as their “trajectories” are uniformly very close to the theoretical values – even for the largest time step

h = 0.1. Finally, since the trajectories for these first moments appear to decay to zero as time passes, we see that

EM and Mi are asymptotically first moment unbiased, in accordance with the analytic results from Section 3.2.

Figure 3: Comparison between the analytic first moment and the first moments of approximate
solutions obtained via EM and Mi. The y-axis is shown in logarithmic scale. The first row shows first
moments for η = 0.3 and the second row for η = 1.4, each row containing three different time steps h.

These plots indicate that EM and Mi are asymptotically first moment stable and accurate [3].

Now, see Figure 4 for a comparison between the theoretical and approximate second moments. Again, we used

values of η ∈ {0.3, 1.4} and time steps h ∈ {0.1, 0.01, 0.001}. Here, only with sufficiently small time steps h we see

the second moments converging to the theoretical result from Equation (21). This is expected since we have stricter

conditions on h for second moment asymptotic stability (cf. Equations (25) and (31)). Moreover, for η = 0.3, we

clearly see the cancellation error expected to appear for early times in our EM and Mi approximations. Despite this

loss of accuracy for small times, for η = 0.3, we see the predicted asymptotic convergence for finer time grids. For

η = 1.4, the second moments of EM and Mi appear to be more sensitive to h, and they diverge for the largest time

step h = 0.1. Still for η = 1.4, we only see convergence to the true second moment when h = 0.001. Finally, Mi is

observed to be the most biased here, as its trajectories are always the furthest away from the theoretical curves.
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Figure 4: Comparison between the analytic second moment and the second moments of approximate
solutions obtained via EM and Mi. The y-axis is shown in logarithmic scale. The first row shows

second moments for η = 0.3 and the second row for η = 1.4, each row containing three different time
steps h. The discrepancy in early times between second moments in the first row is due to

cancellation error in the discrete second moment formula. This leads to loss of accuracy in the
solutions on that region. Still, these plots indicate that EM and Mi are asymptotically second

moment stable for small time steps h. Here, Mi appears to be somewhat more biased than EM [3].

5 Conclusions

Motivated by SDEs that can be used to solve minimization problems in machine learning, we showed that the

Euler-Maruyama and Milstein methods are first and second moment asymptotically stable provided that our time

steps were sufficiently small. In addition, we showed that both of these methods are second moment asymptotically

accurate, and that they are first moment asymptotically accurate and unbiased – again, for small enough time steps.

From numerical experiments, we observed that second moment asymptotic stability and accuracy in both methods

are much more sensitive on time step sizes compared to first moment. Moreover, we also noted that we ought to be

careful with potential cancellation errors introducing loss of accuracy in the second moments for small times. Lastly,

natural next steps would be to test these iterative schemes for SDEs with nonlinear coefficient functions, and for

SDEs with noise term coming from other appropriate stochastic processes apart of standard Brownian motion.

A Python Code

Find below the Python code used to generate the Brownian motion paths, implement the EM and Mi methods, and

perform the asymptotic moment simulations shown in this article.

#!usr/bin/env python3

#

import numpy as np

import matplotlib

import matplotlib.pyplot as plt

9



MAT1850, Winter 2025 Final Project Marcello Ghini Bettiol

import scipy as sc

#

#

#

eps=1.0*10 ** (-14)

pi=np.pi

e=np.e

zero=0.0

done=1.0

#

#

#

def wiener(xi ,n,dt ,out=None):

’’’

This subroutine generates a standard Wiener process with n steps.

Input parameters:

xi - starting position of Wiener process n - number of steps

dt - time step

Output parameters:

out - array of positions at each time for the Wiener process

’’’

xi=np.asarray(xi)

gv=sc.stats.norm.rvs(scale=np.sqrt(dt),size=xi.shape+(n,))

m=np.mean(gv ,axis=1)

if out is None:

out=np.empty(gv.shape)

np.cumsum(gv ,axis=-1,out=out)

out+=np.expand_dims(xi ,axis=-1)

return out ,m

#

#

#

################################################################################

#

# This is the beginning of the testing code proper for the Euler -Maryuama

# and Milstein methods for solving the autonomous scalar Ito SDE with

# affine coefficient functions.

#

################################################################################

#

#

#
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n=1000

t=1

dt=t/n

m=10

xi=np.zeros(n)

w=np.empty((m,n))

w,av=wiener(xi[:],n,dt,out=None)

tt=np.linspace(zero ,n*dt,n)

plt.figure(dpi=200)

for i in range(m):

plt.plot(tt ,w[i],color=’r’)

plt.plot(tt ,av ,linewidth=2,color=’b’,label=’Mean’)

plt.xlabel(r’$t$’)
plt.ylabel(r’$B_t$ ’)
plt.title(r’Standard Brownian motion paths and their mean’)

plt.grid(True)

plt.legend ()

plt.savefig(’plot21.png’)

#

# Solving Ornstein -Uhlenbeck process

#

mu=10

tau=50

sigma=10

a=1/tau

b=mu/tau

c=zero

d=sigma*np.sqrt(2/tau)

rr=np.random.randn(n)

xi=zero

em=np.zeros(n)

em[0]=xi

mi=np.zeros(n)

mi[0]=xi

for i in range(n-1):

em[i+1]=em[i]+(-a*em[i]-b)*dt+(c*em[i]+d)*np.sqrt(dt)*rr[i]

mi[i+1]=mi[i]+(-a*mi[i]-b)*dt+(c*mi[i]+d)*np.sqrt(dt)*rr[i]

+0.5*c*(c*mi[i]+d)*((rr[i])** 2-dt)

plt.figure(dpi=200)

plt.plot(tt ,em ,color=’r’,label=’EM’)
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plt.plot(tt ,mi ,color=’b’,label=’Mi’)

plt.xlabel(r’$t$’)
plt.ylabel(r’$X_t$ ’)
plt.title(r’Solution $(X_t)_{t\geq0}$ for $\mu=10$ , $\tau=50$ , $\sigma=10$’)
plt.legend ()

plt.savefig(’plot30.png’)

#

# Moment stability of EM and Mi

#

n=20000

t=20

dt=t/n

eta=.3

em=np.zeros(n)

mi=np.zeros(n)

xi=done

em[0]=xi

mi[0]=xi

tt=np.linspace(zero ,n*dt,n)

rr=np.random.randn(n)

for i in range(n-1):

em[i+1]=em[i]-em[i]*dt+(1-eta*em[i])*np.sqrt(dt)*rr[i]

mi[i+1]=mi[i]-mi[i]*dt+(1-eta*mi[i])*np.sqrt(dt)*rr[i]

+0.5*(-eta)*(1-eta*mi[i])*(rr[i]** 2-dt)

av1=np.zeros(n)

av1=xi*np.exp(-tt)

me1=np.zeros(n)

mm1=np.zeros(n)

for i in range(1,n):

me1[i]=xi*(1-dt)** i

mm1[i]=xi*(1-dt)** i

plt.figure(dpi=200)

plt.semilogy(tt[1:],me1[1:],’-.’,color=’r’,label=’EM’)

plt.semilogy(tt[1:],mm1[1:],’--’,color=’b’,label=’Mi’)

plt.semilogy(tt[1:],av1[1:],color=’gray’,label=’Theoretical ’)

plt.xlabel(r’$t$’)
plt.ylabel(r’$\log(E[X_t])$’)
plt.title(r’First Moment comparison for $\eta=0.3$ and $h=0.001$’)
plt.legend ()

plt.savefig(’plot41.png’)
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me2=np.zeros(n)

mm2=np.zeros(n)

av2=np.zeros(n)

av2=(xi ** 2)*np.exp(-(2-eta ** 2)*tt)+(1-np.exp(-(2-eta ** 2)*tt))/(2-eta ** 2)

+2*eta*xi*(np.exp(-tt)-np.exp(-(2-eta ** 2)*t))/(1-eta ** 2)

me2[0]=zero

mm2[0]=zero

for i in range(n-1):

me2[i+1]=((1-dt)** 2+dt*eta ** 2)*me2[i]+2*dt*eta*me1[i]+dt

mm2[i+1]=(1-dt)** 2*mm2[i]+dt*(1+2*eta*mm1[i]+mm2[i]*eta ** 2)

+0.5*dt ** 2*eta ** 2*(1+2*eta*mm1[i]+mm2[i]*eta ** 2)

plt.figure(dpi=200)

plt.semilogy(tt[1:],me2[1:],’-.’,color=’r’,label=’EM’)

plt.semilogy(tt[1:],mm2[1:],’--’,color=’b’,label=’Mi’)

plt.semilogy(tt[1:],av2[1:],color=’gray’,label=’Theoretical ’)

plt.xlabel(r’$t$’)
plt.ylabel(r’$\log(E[X_t^2])$’)
plt.title(r’Second Moment comparison for $\eta=0.3$ and $h=0.001$’)
plt.legend ()

plt.savefig(’plot42.png’)
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