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Numerical Methods for Stochastic Differential Equations

Abstract

We study the Euler-Maruyama and Milstein numerical methods to solve an autonomous scalar It6 stochastic
differential equation in the context of machine learning minimization. We present a brief introduction to Brownian
motion and stochastic integration as well as an analysis of the numerical stability of those methods accompanied by

numerical simulations motivated by standard ODE methods.

1 Introduction

Stochastic differential equations (SDEs) are, loosely speaking, differential equations in which one or more terms are
stochastic processes which produce a solution that is also a stochastic process. Precisely because SDEs combine
both random and deterministic effects into a model that is capable of describing the time evolution of degrees of
freedom, they play a central role in science and engineering. In particular, SDEs serve as models for molecular
dynamics, quantum chemistry, Bayesian statistics, weather forecasting, machine learning, and econometrics.

Now, as discussed in [5], SDEs can also play an important role in solving minimization problems, especially in

machine learning. These minimization problems are usually of the form

min f(x), T) = — i(x), 1
iy ) @)= 3 A (1)
where f;: RY — R for i = 1,...,p. In common machine learning terms, x is the vector of trainable parameters; f

represents the total loss function with each f; being the loss due to the i-th training sample; and p is the training
sample size, which can be extremely large [5]. This means that using standard gradient descent — which requires p
gradient evaluations per step — is prohibitively expensive when p > 1. A proposed alternative to avoid this issue
is the so called stochastic gradient descent, which replaces the full gradient V f by a “sampled version” of it that

serves as its (unbiased) estimator. More precisely, the simplest stochastic gradient descent is of the form

vjp1 =5 —nVfy,(z;), jeEN, (2)

where 7 € R is the learning rate, and {U,} e is a collection of i.i.d. uniform random variables taking values in
{1,...,p}. This method in Equation (2) has the advantage that, after sampling only a few indices from the full
gradient V f, its computational complexity is independent of p per iterate [5]. For this reason, stochastic gradient
descent has become a widely used algorithm in large scale problems.

However, even though there are many convergence results for stochastic gradient descent methods, the majority of
these results are upper-bounds for strongly convex objective functions, which often do not characterize the behavior
of systems in real-world settings [5]. So, translating the theoretical understanding of these methods into actual
algorithms can be a very hard task. An alternative approach proposed by [5] is to rewrite the stochastic gradient
descent of Equation (2) as the SDE

dX; = F(X;)dt + G(X:) dBy, (3)

where F,G are a real-valued functions, and (B;)¢>0 is a standard Brownian motion. As shown in [5], under mild
assumptions on f, the solution of the SDE above converges to the solution of the minimization problem in the weak
topology. The advantage of considering this SDE instead of the stochastic gradient descent is that we can employ
the exuberant flora of numerical methods for SDEs to study a larger range of real-world problems.

Now, with this connection between minimization problems and SDEs, certain natural questions appear about
the stability, accuracy, and bias of numerical methods for SDEs. For instance, when modeling scenarios where

long-time trajectories are relevant, understanding and predicting the stability of methods are extremely important;
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e.g., so that we can increase the time steps in our scheme and trade accuracy for physical insights that would
not be available otherwise (see [5] for more examples). In this sense, the goal of this article is to understand the
long-time moment stability of two well-known methods for approximating solutions to SDEs: the Euler-Maruyama
method and the Milstein method. The analysis in this article will be focused on the family of SDEs used by [5] to
rewrite minimization problems (see Section 2 of [5]). Finally, we implement these methods, and perform numerical

experiments with different time step sizes to verify the analytic findings.

Outline. In Section 2, we review a few background concepts from probability and stochastic calculus that are useful
throughout the paper. In Section 3, we introduce the Euler-Maruyama and Milstein methods; we implement them
to obtain the Ornstein-Uhlenbeck process as the solution to an SDE; and, lastly, we prove a few theoretical results
on the long-time stability and accuracy of these methods. Finally, in Section 4, we perform numerical experiments

to verify the theoretical findings of the previous section.

2 Preliminaries: Brownian Motion and Stochastic Calculus

In this section, we review a few concepts that will be relevant throughout this article when studying stochastic
processes (a much more detailed presentation of these topics may be found in [4] and [7]). Stochastic processes
describe dynamical systems that evolve probabilistically with time. More precisely, let (Q, F,IP) be a probability
space and (F,G) be a measurable space. A stochastic process is a collection of random variables (X;: ¢t > 0) such
that, for each ¢ > 0, X; is a random variable from (2, F,P) to (F,G). The set E is called the state space of Xy,
and € is called the sample space. Note that a stochastic process X; is a function of both t > 0 and w € 2. For a
fixed sample point w € Q, we call the function ¢ — X;(w) a sample path of X.

For p > 1, we denote by LP(Q, F,P), or simply LP when the underlying probability space is clear, the space of
real random variables X such that | X |? is integrable (with the usual identification of random variables that are equal
a.s.), and we equip it with the usual norm. For n € IN, define as p,, := E[X™] the n-th moment of a random variable
X, where E[-] denotes the expectation of a random variable. A real random variable X is said to be Gaussian with

mean m and standard deviation o2, denoted X ~ N(m,0?), if its law has density

1 2 2
_ —(xz—m)* /20 4
X\T) = —F—€ .
px(@) oV 2w @
Now, one of the most important stochastic processes is Brownian motion (also known as Wiener process). We say

that a real random process (By);>¢ is a (standard) Brownian motion if the following two conditions hold:

(i) By = 0 a.s., and, for every choice of 0 = ¢y < t; < --- < t,, the increments B, — By, ,, 1 < i < p, are
independent and distributed as N(0,¢; — t;-1);

(ii) All sample paths of B are continuous.

Define a filtration (F;)i>0 as a collection of o-algebras on (€, F,P) such that F; C F; for every s < t. Now,
we say that a real-valued random process (X;);>o such that X; € L' for every t > 0 is an adapted martingale
with respect to a filtration (Fi)i>o if X is Fi-measurable for all ¢ > 0, and we have that E[X;|F,] = X, for
every 0 < s < t. As an example, Brownian motion (By)¢>o is a martingale adapted to the canonical filtration
Fi=0(Bs: s <t).

Let (X;)i>0 be a martingale. We define the (1t4) stochastic integral as

t Pn
/ X,dX, = lim Z Xin (Xt'rq_l — Xin), (5)
0 n—00 et o B K

where the limit converges in probability, and the partitions 0 = ¢f < ¢§ < --- < t; =t of [0,#] get more and

more refined as n 7 co. It is possible to define more general stochastic integrals, but the integral in Equation (5)
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Figure 1: Plot of 10 individual paths of a standard Brownian motion and their mean at each time.

is enough for the purposes of this article. For convergence results and in-depth analysis of stochastic integrals, we
direct the reader to [4] and Chapter 3 of [7].
Finally, the autonomous scalar Ité6 SDE is given by

dX: = f(Xy)dt + g(Xy)dB, te€][0,T], (6)

where f, g are real-valued functions. Note that, if g = 0 (i.e., no noise coefficient), this becomes a familiar deter-

ministic ODE
dX,

dt

It is worth noting that the form in which Equation (6) is written is just a notational convenience since the “infinites-

= f(Xt)a te [OaT] (7)
imals” there have no mathematical meaning. We can write Equation (6) more precisely as
X, — Xo = / F(X ds+/ o(X,)dBs, te[0,T). (8)

3 Euler-Maruyama and Milstein Methods

In this section we introduce the Euler-Maruyama and Milstein methods to iteratively approximate solutions to SDEs
following Chapter 5 of [7] and [3]. Later in this section, we analyze the numerical stability of those methods by
comparing the first and second moments of the theoretical solutions with the moments of the approximate solutions.

For the purposes of this article, we consider the scalar autonomous It6 SDE given by

dX; = f(X¢)dt +g(X¢)dBe, t€0,T], 9)
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with a deterministic initial condition Xy € [0, 1], where (B;);>0 is a standard Brownian motion, and the functions
f,g are affine and do not depend on time. In order to approximate solutions, we discretize our time interval [0, T]]
into n equispaced nodes so that the length of each time subinterval is h = T'/n. By doing this, we generate a
time grid ¢t; = jh, for j = 0,...,n. To simplify notation, let x; denote the approrimate solution at time t; for

7 =20,...,n. Moreover, let
fi=f(z;) and fj=f'(z;), j=0,...,n, (10)

and similarly for g; and gé. Lastly, in order to simulate the Brownian steps, define a sequence (ABJ»)}‘ZO of i.i.d.
random variables AB; ~ N(0,h) for j =0,...,n.
The Euler-Maruyama method (abbreviated here as EM) is given by

Tj+1 =$j+fjh+ngBj, 7=0,...,n. (11)

The Milstein method (abbreviated here as Mi) is given by
1 ,
Tj41 ::Uj+fjh+ngBj+§g}gj[(ABj)2 —h], 7=0,...,n. (12)

Note that EM is very similar to the well-known Euler method for iteratively approximating solutions to ODEs; in
particular, EM takes Euler’s method and adds a stochastic correction. Moreover, Mi takes the formula for EM and
adds another correction term that depends on (AB;)?, in close resemblance to It&’s formula. As shown in Chapter
5 of [7] and Section 2 of [3], the convergence of the EM method is of order 1 (with respect to the weak topology)
and the convergence of the Mi method is of order 1 (also in the weak topology).

3.1 Example: Ornstein-Uhlenbeck Process

Now, as an example, we implement the methods above to numerically approximate the solution to a well-known

SDE. Consider the following initial value problem

X — 2
dx, = -2 “dt+"\[dBt, X =0, fortel0,T], (13)
T T

where p, 7,0 € R4 are nonnegative constants, and (B;):>¢ is a standard Brownian motion. The solution to the
SDE above is called the Ornstein-Uhlenbeck process, and it is commonly used in physics to model the velocity of a
Brownian particle (of positive mass) under a dissipative force [Chapter 3 of 7].

See Figure 2 for Ornstein-Uhlenbeck processes numerically computed for different choices of constants. For these
simulations, we considered the time interval [0, 1], and we discretized it with n = 1000 equispaced nodes; i.e., the

time steps used were of length h = 0.001. In this case, the coefficient functions f, g are

flz) = - o gle) =0y = (14)

So, the iterative scheme for both EM and Mi is given by

Tj — 2 .
$j+1=a?j+(— ]T'u>h+0'\/:ABj, 7=0,...,n, (15)

since ¢’ = 0. Now, even though both EM and Mi produce the same iterative scheme in this case, we can clearly see

the non-deterministic character of the solution to this differential equation. As indicated by Figure 2, the larger the
magnitude of the dB; term, the “noisier” the solution process. This is expected since the Brownian motion term is

responsible for introducing “randomness” to the equation.
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Figure 2: Approximate solutions for Equation (13) with different parameters 7 and o. The same
mean g = 10 and initial condition Xy = 0 were used for the simulations presented in this figure. The
plots clearly show that the solution seems “more deterministic” when the d¢ term dominates, and
“noisier” when the dB; term dominates.

3.2 Stability

Now, we turn our attention to the asymptotic moment stability of the methods EM and Mi described above following
the discussions in [2], [6], and Chapter 5 of [7]. In order to study the asymptotic stability of EM and Mi with different

time steps h, we define the m-th moment of the approximate solution x; at the j-th time step as
W™ = E((z)™], j=0,...,n. (16)

As in [6], we say that a numerical scheme with time step h of an SDE is asymptotically stable for the m-th moment
if we have that

lim sup
Jj—o0

W =B [(X0,)"] | < o, (17)
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where X;, is the continuous-time solution to the SDE at time ¢;. Moreover, following [7], we say that a numerical

scheme is asymptotically O(h’) accurate for the m-th moment if, for sufficiently small h, we have that

limsup ™ — B [(X,,)™] ‘ — O(h). (18)

Jj—o0

Note that, by the above definitions, in order for a numerical scheme to be asymptotically accurate, it must be stable
for the same moment [Chapter 5, 7]. For the purposes of this article, we will be mostly interested in first and second
asymptotic moment stability and accuracy.

Finally, following the case reductions in [3], [5], and [Chapter 5, 7], we study the asymptotic moment stability
and accuracy of EM and Mi for the SDE

where || < v/2 and (By);> is a standard Brownian motion; that is, Equation (6) with f(z) = —z and g(x) = 1—naz.

As shown in Section 3.3 of [3], the first two moments of the continuous-time solution process of Equation (19) are
E[X;] = Xoe (20)

and

X2e~tC7") 4 5 1 . (1 _ 6—t(247"‘)) + 1277X02 (6% _ e—t(zfvﬁ)) . ifn £ 1,
E[(X)?] = N - . (21)

Xge=t —e ™t + 14+ 2Xpte?, ifn==+1

As proven also in Section 3.3 of [3], provided that n? < 2, we have that E[(X;)?] — 1/(2 — n?) as t — oo.

3.2.1 Asymptotic Moment Stability of Euler-Maruyama (EM)

Consider the SDE in Equation (19). Taking expectations on the definition of EM (Equation (11)), and using the
fact that AB; ~ N(0, h) is independent of x; for all j =0,...,n, we obtain

W) = Blrj] = Bloy — ajh+ (1 - na;)ABy)
=E[(1 - h)x; + (1 — nx;)ABy]

Thus, ,ugl) = x0(1 — h)7. Note that, similarly to Euler’s method for approximating deterministic ODEs, in order to

have asymptotic stability, we must require the time step h to be such that |1 — h| < 1; i.e., h € (0,2). If this is the
(1
J

Similarly, we have that the second moment of EM’s approximate solution to Equation (19) is

case, then p:’ — 0 as j — oo, so EM here is first moment asymptotically stable and unbiased [3, Chapter 5 of 7].

WP =E[(2;41)?] = E[(1 - h)%2?] + E [(1 - nz;)*(AB;))?]
= 1 [(1 = h)? + ] + 20D + h.

J

(23)

Note that we now have a recursive formula for the second moment. So, using the standard linear analysis method

introduced by [1, 2], EM is second moment asymptotically stable here whenever

1>

= |(1=h)* +n’hl; (24)

P
"o (uf’ (1= ) + h?] + 20k + h)
J
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i.e., whenever
0<h<2—n (25)

As expected, second moment stability is more restrictive than first moment stability.
Lastly, under the constraints on h obtained above, this EM scheme is asymptotically stable for the first and

(2 (2

second moments. Thus, 4, converges to, say, psc’ as j — 0o, and we have that

ne = n [0 =h)* + o] + (26)

)

since p;’ — 0 as j — oo under the constraints above. So, by Equation (21),

1
(2) = — = 2 .
e’} 2_h— ,'72 E[Xt]] + O(h)7 (27)

i.e., this EM scheme is asymptotically first order accurate for the second moment [3].

3.2.2 Asymptotic Moment Stability of Milstein (Mi)

Once again, consider the SDE in Equation (19). Now, the Mi method defined in Equation (12) gives
1
zjr1 = (1—h)z; + (1 —nz;)AB; — 577(1 —nz;)((AB;)* = h). (28)

So, since z; is independent of AB; for all j € N, after taking expectations on both sides of the equation above,
we obtain that ﬂﬁ)l =(1- h)ﬂgl), just as for EM. That is, ,ugl) = xo(1 — h)7, as before. With this, we again find
that, provided that h € (0,2), this Mi scheme is asymptotically first moment stable (and unbiased since u;l)
as j — 00) [6, 3, Chapter 5 of 7].

Now, we turn to the second moment of this Mi. After squaring and taking expectations on Equation (28), we

find that

— 0

2 2 1 2 1 2 1
p =Bl ] = (1 - )2l +h (1 + 20l + n?p )) + 5k (n2u§- Vponut + 1) : (29)

Thus, following [2, 6] and assuming that h € (0,2) so that ugl) — 0, Mi is asymptotically stable for the second

moment if
9 1
o 52 (12 o ) b (7 o 1)
" (30)
2 774 h(2 9
=|1+h*(1+ =) - _ .
ie., if
92— 2
0<h< Z. (31)
2

Comparing the above condition on h for Mi to be second moment asymptotically stable with the one for EM, we
see that the condition for Mi is more restrictive than for EM (cf. Equation (25)).
Finally, note that, when Mi is asymptotically second moment stable here, in the limit,
hn?
= +1 1
4 = 2 N =5 + 0. (32)
2-m2—n(1+%) 270

Thus, this Mi is asymptotically first order accurate for the second moment [6].
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4 Numerical Experiments

We performed a series of numerical simulations (see Appendix A for the code used) to verify the analytic results
presented in the previous section about the stability and accuracy of EM and Mi in the setting of Equation (19).
All experiments were performed in a laptop with 16 GB of RAM and an Intel 8" Gen. Core i7-8550U CPU. We
considered the time interval [0,20] for all the numerical experiments that follow. See Figure 3 for a comparison
between the approximate first moments of EM and Mi with the theoretical first moment in Equation (20). For
these numerical simulations, we used values of n € {0.3,1.4} and time steps h € {0.1,0.01,0.001}. From the plots
in Figure 3, we can clearly see that EM and Mi are asymptotically first moment stable and accurate here for both
values of 1, as their “trajectories” are uniformly very close to the theoretical values — even for the largest time step
h = 0.1. Finally, since the trajectories for these first moments appear to decay to zero as time passes, we see that

EM and Mi are asymptotically first moment unbiased, in accordance with the analytic results from Section 3.2.

First Moment comparison for n=0.3 and h=0.1 First Moment comparison for n=0.3 and h=0.01 First Moment comparison for n=0.3 and h=0.001
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Figure 3: Comparison between the analytic first moment and the first moments of approximate
solutions obtained via EM and Mi. The y-axis is shown in logarithmic scale. The first row shows first
moments for n = 0.3 and the second row for n = 1.4, each row containing three different time steps h.

These plots indicate that EM and Mi are asymptotically first moment stable and accurate [3].

Now, see Figure 4 for a comparison between the theoretical and approximate second moments. Again, we used
values of € {0.3,1.4} and time steps h € {0.1,0.01,0.001}. Here, only with sufficiently small time steps h we see
the second moments converging to the theoretical result from Equation (21). This is expected since we have stricter
conditions on h for second moment asymptotic stability (cf. Equations (25) and (31)). Moreover, for n = 0.3, we
clearly see the cancellation error expected to appear for early times in our EM and Mi approximations. Despite this
loss of accuracy for small times, for 7 = 0.3, we see the predicted asymptotic convergence for finer time grids. For
n = 1.4, the second moments of EM and Mi appear to be more sensitive to h, and they diverge for the largest time
step h = 0.1. Still for n = 1.4, we only see convergence to the true second moment when h = 0.001. Finally, Mi is

observed to be the most biased here, as its trajectories are always the furthest away from the theoretical curves.
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Second Moment comparison for n=0.3 and h=0.01 Second Moment comparison for n=0.3 and h=0.001

Second Moment comparison for n=0.3 and h=0.1
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Figure 4: Comparison between the analytic second moment and the second moments of approximate
solutions obtained via EM and Mi. The y-axis is shown in logarithmic scale. The first row shows
second moments for 7 = 0.3 and the second row for n = 1.4, each row containing three different time
steps h. The discrepancy in early times between second moments in the first row is due to
cancellation error in the discrete second moment formula. This leads to loss of accuracy in the
solutions on that region. Still, these plots indicate that EM and Mi are asymptotically second
moment stable for small time steps h. Here, Mi appears to be somewhat more biased than EM [3].

5 Conclusions

Motivated by SDEs that can be used to solve minimization problems in machine learning, we showed that the
Euler-Maruyama and Milstein methods are first and second moment asymptotically stable provided that our time
steps were sufficiently small. In addition, we showed that both of these methods are second moment asymptotically
accurate, and that they are first moment asymptotically accurate and unbiased — again, for small enough time steps.
From numerical experiments, we observed that second moment asymptotic stability and accuracy in both methods
are much more sensitive on time step sizes compared to first moment. Moreover, we also noted that we ought to be
careful with potential cancellation errors introducing loss of accuracy in the second moments for small times. Lastly,
natural next steps would be to test these iterative schemes for SDEs with nonlinear coefficient functions, and for

SDEs with noise term coming from other appropriate stochastic processes apart of standard Brownian motion.

A Python Code

Find below the Python code used to generate the Brownian motion paths, implement the EM and Mi methods, and

perform the asymptotic moment simulations shown in this article.

#!usr/bin/env python3

#

import numpy as np

import matplotlib

import matplotlib.pyplot as plt
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import scipy as sc
#

#

#

eps=1.0%10%* (-14)
pi=np.pi

e=np.e

zero=0.0

done=1.0

#

#

#

def wiener (xi,n,dt,out=None):

PP AS)

This subroutine generates a standard Wiener process with n steps.

Input parameters:

xi - starting position of Wiener process n - number of steps

dt - time step
Output parameters:

out - array of positions at each time for the Wiener process

200

xi=np.asarray (xi)
gv=sc.stats.norm.rvs(scale=np.sqrt(dt),size=xi.shape+(n,))
m=np.mean (gv,axis=1)

if out is None:

out=np.empty(gv.shape)

np.cumsum(gv,axis=-1,out=out)

out+=np.expand_dims (xi,axis=-1)

return out,m
#
#
#
RARRRRAAAHRRRRRARRRRRRRRRRRRRRRARRRRRARRRRRRRRRARBRRRRHRRHARRRARRRBRRRRARHBRRHRARAHR
#
# This is the beginning of the testing code proper for the Euler-Maryuama
# and Milstein methods for solving the autonomous scalar Ito SDE with
# affine coefficient functions.
#
RARRRRAAARRRRARARRRRRRRRRRRRRARARRRRRARAHRRRRARARARRRRARRARRRRHAAHRRRRRHRAHRBRRHRARHH
#
#
#

10
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n=1000
t=1
dt=t/n

m=10

xi=np.zeros(n)

w=np.empty ((m,n))

w,av=wiener(xi[:],n,dt,out=None)

tt=np.linspace(zero,n*dt,n)

plt.figure (dpi=200)
for i in range(m):
plt.plot(tt,w[i],color="r"’)
plt.plot(tt,av,linewidth=2,color="b’,label="Mean’)
plt.xlabel(r’$t$’)
plt.ylabel(r’$B_t$’)
plt.title(r’Standard Brownian motion paths and their mean’)
plt.grid(True)
plt.legend ()
plt.savefig(’plot21.png’)
#
# Solving Ornstein-Uhlenbeck process
#
mu=10
tau=50
sigma=10

a=1/tau
b=mu/tau
c=zero

d=sigma*np.sqrt(2/tau)

rr=np.random.randn(n)

xi=zero

em=np.zeros (n)

em[0]=x1i

mi=np.zeros(n)

mi[0]=xi

for i in range(n-1):
em[i+1]=em[i]+(-a*em[i]-b)*dt+(c*em[i]+d)*np.sqrt(dt)*rr[i]
mi[i+1]=mi[i]+(-a*mi[i]-b)*dt+(c*mil[i]+d)*np.sqrt(dt)*rr[il
+0.6*xcx (cxmi[1i]+d)* ((rr[i]) **2-dt)

plt.figure(dpi=200)
plt.plot(tt,em,color="r’,label="EM’)
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plt.plot(tt,mi,color="b’,label="Mi’)
plt.xlabel(r’$t$’)

plt.ylabel (r’$X_t$’)
plt.title(r’Solution $(X_t)_{t\geq0}$ for $\mu=10%, $\tau=50%, $\sigma=10$’)
plt.legend ()
plt.savefig(’plot30.png’)

#

# Moment stability of EM and Mi

#

n=20000

t=20

dt=t/n

eta=.3

em=np.zeros (n)

mi=np.zeros(n)

xi=done

em[0]=xi

mi[0]=xi

tt=np.linspace(zero,n*dt,n)

rr=np.random.randn (n)

for i in range(mn-1):
em[i+1]=em[i]-em[i]*dt+(1-eta*em[i])*np.sqrt (dt)*rr[i]
mili+1]=mi[i]-mil[il*dt+(l-eta*mi[i])*np.sqrt(dt)*rr[i]
+0.6x(-eta)*(1-eta*mi[i])*(rr[i] **2-dt)

avli=np.zeros(n)

avli=xi*np.exp(-tt)

mel=np.zeros(n)

mml=np.zeros (n)

for i in range(l,n):
mel[i]=xi*(1-dt) **i
mml[i]=xi*(1-dt)**i

plt.figure (dpi=200)
plt.semilogy(tt[1:],me1[1:],’-.7,color="r’,label="EM’)
plt.semilogy(tt[1:],mm1[1:],’--’,color="b’,label="Mi’)
plt.semilogy(tt[1:],avi[1:],color="gray’,label="Theoretical’)
plt.xlabel(r’$t$’)

plt.ylabel(r’$\log(E[X_t]1)$’)

plt.title(r’First Moment comparison for $\eta=0.3$ and $h=0.001$’)
plt.legend ()

plt.savefig(’plot4l.png’)

12




MAT1850, Winter 2025 Final Project Marcello Ghini Bettiol

me2=np.zeros (n)

mm2=np.zeros (n)

av2=np.zeros (n)
av2=(xi**2)*np.exp(-(2-eta**2)*xtt)+(1-np.exp(-(2-eta**2)*tt))/(2-eta**2)
+2xeta*xix(np.exp(-tt)-np.exp(-(2-eta**2)*t))/(l-eta**x2)

me2[0]=zero

mm2 [0] =zero

for i in range(n-1):
me2[i+1]=((1-dt) **2+dt*eta**2)*me2[i] +2*xdt*eta*mel [i]+dt
mm2 [1i+1]=(1-dt) **2+mm2 [i] +dt* (1+2*eta*mml [i]+mm2 [i] *eta**2)

+0.5*dt **2*xeta**x2* (1+2*xeta*mml [i]+mm2 [i] xeta**2)

plt.figure (dpi=200)
plt.semilogy(tt[1:],me2[1:],’~-.7,color="r’,label="EM’)
plt.semilogy(tt[1:],mm2[1:],’--’,color="b’,label="Mi’)
plt.semilogy(tt[1:],av2[1:],color="gray’,label="Theoretical’)
plt.xlabel(r’$t$’)

plt.ylabel(r’$\log(E[X_t"21)$)

plt.title(r’Second Moment comparison for $\eta=0.3$ and $h=0.001%$")
plt.legend ()

plt.savefig(’plot42.png’)
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